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Dynamic Optimization:
Euler and how to
optimally eat cake
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D y n a m i c O p t i m i z a t i o n : B a s i c P r o b l e m

In this section we review the basics/intuition of dynamic optimization. We are going to
solve how to properly eat a cake!

Figure: How would you eat this cake... if it was the only food you would ever get!
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C a k e E a t i n g P r o b l e m

1. Utility function u(c) = l n (c), where c is the slice of the cake you are eating.
2. You have a cake of size x .
3. Your discount factor is β ∈ [0, 1).
4. You live forever.
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C a k e E a t i n g P r o b l e m

So at each point in time:
1. you have xt of cake
2. you get l n (ct) of utility, and
3. you leave xt+1 = xt − ct for the future.

Your only decision variable is how much cake eat at each period, which impacts on
your utility today, but also on how much utility you will be able to get in the future.
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C a k e E a t i n g P r o b l e m

So your problem is:

s u p

{ct}∞t

∞∑
t=0

βt
l n (ct)

s.t. xt+1 = xt − ct

ct ≥ 0 ∀t
xt ≥ 0 ∀t

x0 > 0 given

Keep this in mind...
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G e n . S e q . O p t . P r o b l e m

Given β ∈ [0, 1)

s u p

{xt}∞t=1

∞∑
t=0

βtF (xt , xt+1)

s.t. xt+1 ∈ Γ(xt)

x0 ∈ X ⊆ Rn

With Γ(xt) 6= ∅ and Γ(xt) ⊆ X , that is, only allow for feasible values for xt . X is
known as the state space, and xt is then known as the... you guessed it? state variable.
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We can write what is the problem, using the notation we got from the set part...

A = {(x , y) : x ∈ X , y ∈ Γ(x)}
F : A → R

And we actually can choose from

Π(x0) = {{xt}∞t=0, xt ∈ Γ(xt−1), t ∈ N}

So Π(xo) represents the set of admissible paths starting at x0, and therefore the
generic problem is equivalent to writing:

s u p

{xt}∞t=1∈Π(x0)

∞∑
t=0

βtF (xt , xt+1)

with x0 given.
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So how we solve this. It would help to get an idea of what we could expect of a
solution.
Of course we cannot find xt for every t explicitly, as there are an infinite number of
those, however, we can find a function to generate them, this function is called policy
function.

xt = g(xt−1)

Then the solution would look like...

{x0, g(x0), g(g(x0)), ...}
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C a u c h y ’ s C r i t e r i o n

A real sequence {rt} converges in R if and only if ∀ε > 0 ∃T such that ∀t, s > T
|rt − rs | < ε
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So we want that for T < T < S,

∣∣∣∣∣
T∑

t=0

βtF (xt , xt+1)−
S∑

t=0

βtF (xt , xt+1)

∣∣∣∣∣ =
∣∣∣∣∣

S∑
t=T+1

βtF (xt , xt+1)

∣∣∣∣∣
And

∣∣∣∣∣
S∑

t=T+1

βtF (xt , xt+1)

∣∣∣∣∣ ≤
S∑

t=T+1

βt |F (xt , xt+1)|
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A s s u m p t i o n

To find the solution we need an extra assumption, that F (xt , xt+1) is bounded!...
∃M > 0 such that ∀(x , y) ∈ A |F (x , y)| ≤ M
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S∑
t=T+1

βt |F (xt , xt+1)| ≤
S∑

t=T+1

βtM = M
S∑

t=T+1

βt

As β ∈ [0, 1)

M
S∑

t=T+1

βt ≤ M
∞∑

t=T+1

βt = MβT+1
∞∑

t=0

βt = MβT+1 1

1− β

Now we want, from Cauchy, that

MβT+1 1

1− β
< ε

Which can be achieved by choosing a sufficiently large T .
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W h a t d i d j u s t h a p p e n ? ?

We saw that
∑∞

t=0 β
tF (xt , xt+1) converges, so the objective function is well defined, if

F is bounded on the feasible domain, so
∞∑

t=0

βtF (xt , xt+1) ∈ R

The other assumption that would ensure a well defined objective function is F ≥ 0.
Note that as β ≥ 0 this would ensure that the sequence is strictly increasing in T , and
therefore or it would reach a limit, or it could diverge to +∞. What we cannot have is
the sequence having more than one accumulation points, because we wouldn’t know
what happens at the end.
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A p p r o a c h e s

1. Dynamic Programming
2. Variational Approach: Euler’s Equations

We’ll deal with Euler’s equations here. Dynamic Programming although very useful is
complex enough to be too much for a couple of hours lecture.

P. Fagandini



V a r i a t i o n a l A p p r o a c h

Say x∗ ∈ Rn is a maximizer of f : Rn → R, then

f (x∗
1 , x∗

2 , x∗
3 , ..., x∗

n ) ≥ f (x1, x2, x3, ..., xn) ∀x ∈ Rn

Which in turns implies that

f (x∗
1 , x∗

2 , x∗
3 , ..., x∗

n ) ≥ f (x1, x∗
2 , x∗

3 , ..., x∗
n ) ∀x1 ∈ R

If f is differentiable in x1, then we would have

fx1(x∗
1 , x∗

2 , x∗
3 , ..., x∗

n ) = 0

as the first order condition. Moreover, we could generalize for each variable (assuming
differentiability) to have

fxi (x∗
i , x∗

−i) = 0 ∀i = 1, ..., n
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E u l e r ’ s E q u a t i o n s

Let β ∈ (0, 1) (note that if β = 0 then the problem is not dynamic).

Let {x∗
t }∞t=0 be such that

∞∑
t=0

βtF (x∗
t , x∗

t+1) = s u p

Π(x∗
0 )

∞∑
t=0

βtF (x∗
t , x∗

t+1) = m a x
Π(x∗

0 )

∞∑
t=0

βtF (x∗
t , x∗

t+1)

And let τ ∈ N fixed (but arbitrary).
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The contribution of x∗
τ to the objective function lies within the following terms

βτ−1F (x∗
τ−1, x∗

τ ) + βτF (x∗
τ , x∗

τ+1)

with
x∗
τ ∈ Γ(x∗

τ−1), x∗
τ+1 ∈ Γ(x∗

τ )

All the other terms, do not have x∗
τ in them.
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Q u i c k Q u i z - 1 0 m i n u t e s

Note:

βτ−1F (x∗
τ−1, x∗

τ ) + βτF (x∗
τ , x∗

τ+1) =

m a x
x∈Γ(x∗

τ−1),x∗
τ+1∈Γ(x)

βτ−1F (x∗
τ−1, x) + βτF (x , x∗

τ+1)

Why? Prove it. Hint: Go by contradiction.
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If x∗
τ ∈ intΓ(x∗

τ−1) and x∗
τ+1 ∈ intΓ(x∗

τ ), then x∗
τ is a local maximizer of

βτ−1F (x∗
τ−1, x) + βτF (x , x∗

τ+1)

, and if F () is differentiable, then

F ′
2(x∗

τ−1, x∗
τ ) + βF ′

1(x∗
τ , x∗

τ+1) = 0

Which is the Euler’s Equation. F ′
i represents the derivative of F with respect to the ith

coordinate.
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E u l e r ’ s E q u a t i o n

C o n j e c t u r e

If {x∗
t }∗t=0 is optimal for the initial value x∗

0 , and F () is differentiable, and if
x∗

t ∈ intΓ(x∗
t−1)∀t ∈ N then

F ′
2(x∗

t−1, x∗
t ) + βF ′

1(x∗
t , x∗

t+1) = 0 ∀t ∈ N

is a necessary condition for an interior optimizer.

Note, necessary is not the same as sufficient.
Now let’s go back to our...
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We had

s u p

{xt}

∞∑
t=0

βt
l n (xt − xt+1)

s.t. xt+1 ∈ (0, xt)

x0 given
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Is the objective function well defined?

By definition x0 > x1 > x2 > ... > 0, so ∃x∞ = l i m t→∞ xt , and therefore
l i m t→∞ xt − xt+1 = x∞ − x∞ = 0...

Why does xt converge? Quick Quiz → 5 minutes.

Monotonic and bounded! we can use the monotone convergence theorem.
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If xt is convergent, then ∃T ∈ N such that for t > T xt − xt+1 < 1 or
l n (xt − xt+1) < 0.
Let S > T ,

S∑
t=0

βt
l n (xt − xt+1) =

T∑
t=0

βt
l n (xt − xt+1)︸ ︷︷ ︸

∈R

+

S∑
t=T+1

βt
l n (xt − xt+1)︸ ︷︷ ︸

decreasing in S

So there exists a limit in R ∪ {−∞}.
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Now

F (xt , xt+1) = ln(xt − xt+1)

Leads to:

βt−1[l n (xt−1 − xt) + β l n (xt − xt+1)]

And therefore the Euler equation is:

− 1

xt−1 − xt
+ β

1

xt − xt+1
= 0

Note that xt−1 − xt = ct−1 so

− 1

ct−1
+ β

1

ct
= 0 ⇒ ct = βct−1 ⇒ ct = βtc0
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Now note, c0 = x0 − x1, and have no clue about x1 just yet, so we need an extra
condition for x1.

Use the fact that
∑∞

t=0 ct ≤ x0... you cannot eat more than the cake!
And c0 = x0 − x1, c1 = x1 − x2, c2 = x2 − x3 ... cT = xT − xT+1, so∑T

t=0 ct = x0 − xT+1, let T → ∞, then so
∑∞

t=0 ct = x0 − x∞ ≤ x0, and consider that
x∞ ≥ 0.

Note now that if
∑∞

t=0 ct < x0, then ct cannot be optimal, as there is cake left to be
eaten!, so necessarily optimality implies x∞ = 0, so the extra constraint is the
transversality condition.

l i m
T→∞

xT = 0
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ct = βtc0
xt − xt+1 = βtc0

xt+1 = xt − βtc0
xt+1 = (xt−1 − βt−1c0)− βtc0

...
xt+1 = x0 − c0 − ...− βtc0

xt+1 = x0 − c0
1− βt+1

1− β

xt = x0 − c0
1− βt

1− β
... t → ∞

x∞ = x0 − c0
1

1− β
= 0
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And replacing for x , we have

x0 −
c0

1− β
= 0

x0 −
x0 − x1
1− β

= 0

x1 = βx0

And as c0 = x0 − x1 = x0 − βx0 = (1− β)x0, then if an optimal exists, then it is

ct = βt(1− β)x0
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